Robust Adaptive Control of a Large Spacecraft
نویسندگان
چکیده
This paper deals with the applicability of Robust Adaptive Control to the attitude motion control of large spacecraft. Large spacecraft and space structures, such as large communication satellites and the ISS (International Space Station), have been constructed on orbit. However dynamic characteristics of these structures can not be fully verified on the ground because of their size, mass and flexibility. Therefore, some unmodelled dynamics, for example, truncated vibration modes, and/or unknown elements should be taken into account for the precise and stable control of attitude motion. Based on the above consideration the applicability of the Robust Adaptive Control was carefully examined and the results of numerical simulations are given. These showed good performance of the attitude control system. We also refer to the basic idea about the modal truncation.
منابع مشابه
Robust Attitude Control of Spacecraft Simulator with External Disturbances
The spacecraft simulator robust control through H∞-based linear matrix inequality (LMI) and robust adaptive method is implemented. The spacecraft attitude control subsystem simulator consists of a platform, an air-bearing and a set of four reaction wheels. This set up provides a free real-time three degree of freedom rotation. Spacecraft simulators are applied in upgrading and checking the c...
متن کاملRobust Optimal Control of Flexible Spacecraft During Slewing Maneuvers
In this paper, slewing maneuver of a flexible spacecraft with large angle of rotation is considered and assuming structural frequency uncertainties a robust minimum-time optimal control law is developed. Considering typical bang-bang control commands with multiple symmetrical switches, a parameter optimization procedure is introduced to find the control forces/torques. The constrained minimizat...
متن کاملDesign of Nonlinear Robust Controller and Observer for Control of a Flexible Spacecraft
Two robust nonlinear controllers along with a nonlinear observer have been developed in this study to control a 1D nonlinear flexible spacecraft. The first controller is based on dynamic inversion, while the second one is composed of dynamic inversion and µ-synthesis controllers. The extension of dynamic inversion approach to flexible spacecraft is impeded by the non-minimum phase characteristi...
متن کاملAdaptive Control of a Spin-Stabilized Spacecraft Using two Reaction Wheels and a 1DoF Gimbaled-Thruster
In impulsive orbital maneuvers, a large disturbance torque is generated by the thrust vector misalignment from the center of mass (C.M). The purpose of this paper is to reject the mentioned disturbance and stabilize the spacecraft attitude, based on the combination of a one degree of freedom (1DoF) gimbaled-thruster, two reaction wheels (RWs) and spin-stabilization. In this paper, the disturban...
متن کاملActive Vibration Suppression of a Nonlinear Flexible Spacecraft
In this article, the issue of attitude control and active vibration suppression of a nonlinear flexible spacecraft is assessed through piezoelectric patches as actuator and sensors. Two controller loops are applied: the inner loop, to make the panel vibration damped through piezoelectric patches; and the outer loop, to perform spacecraft maneuver using the reaction wheel acting on the hub. An o...
متن کاملHigh-Performance Robust Three-Axis Finite-Time Attitude Control Approach Incorporating Quaternion Based Estimation Scheme to Overactuated Spacecraft
With a focus on investigations in the area of overactuated spacecraft, a new high-performance robust three-axis finite-time attitude control approach, which is organized in connection with the quaternion based estimation scheme is proposed in the present research with respect to state-of-the-art. The approach proposed here is realized based upon double closed loops to deal with the angular rate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Engineering Letters
دوره 16 شماره
صفحات -
تاریخ انتشار 2008